Package: hopit 0.11.5
hopit: Hierarchical Ordered Probit Models with Application to Reporting Heterogeneity
Self-reported health, happiness, attitudes, and other statuses or perceptions are often the subject of biases that may come from different sources. For example, the evaluation of an individual’s own health may depend on previous medical diagnoses, functional status, and symptoms and signs of illness; as on well as life-style behaviors, including contextual social, gender, age-specific, linguistic and other cultural factors (Jylha 2009 <doi:10.1016/j.socscimed.2009.05.013>; Oksuzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The hopit package offers versatile functions for analyzing different self-reported ordinal variables, and for helping to estimate their biases. Specifically, the package provides the function to fit a generalized ordered probit model that regresses original self-reported status measures on two sets of independent variables (King et al. 2004 <doi:10.1017/S0003055403000881>; Jurges 2007 <doi:10.1002/hec.1134>; Oksuzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The first set of variables (e.g., health variables) included in the regression are individual statuses and characteristics that are directly related to the self-reported variable. In the case of self-reported health, these could be chronic conditions, mobility level, difficulties with daily activities, performance on grip strength tests, anthropometric measures, and lifestyle behaviors. The second set of independent variables (threshold variables) is used to model cut-points between adjacent self-reported response categories as functions of individual characteristics, such as gender, age group, education, and country (Oksuzyan et al. 2019 <doi:10.1016/j.socscimed.2019.03.002>). The model helps to adjust for specific socio-demographic and cultural differences in how the continuous latent health is projected onto the ordinal self-rated measure. The fitted model can be used to calculate an individual predicted latent status variable, a latent index, and standardized latent coefficients; and makes it possible to reclassify a categorical status measure that has been adjusted for inter-individual differences in reporting behavior.
Authors:
hopit_0.11.5.tar.gz
hopit_0.11.5.zip(r-4.5)hopit_0.11.5.zip(r-4.4)hopit_0.11.5.zip(r-4.3)
hopit_0.11.5.tgz(r-4.4-x86_64)hopit_0.11.5.tgz(r-4.4-arm64)hopit_0.11.5.tgz(r-4.3-x86_64)hopit_0.11.5.tgz(r-4.3-arm64)
hopit_0.11.5.tar.gz(r-4.5-noble)hopit_0.11.5.tar.gz(r-4.4-noble)
hopit_0.11.5.tgz(r-4.4-emscripten)hopit_0.11.5.tgz(r-4.3-emscripten)
hopit.pdf |hopit.html✨
hopit/json (API)
NEWS
# Install 'hopit' in R: |
install.packages('hopit', repos = c('https://maciejdanko.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/maciejdanko/hopit/issues
- healthsurvey - Artificially generated health survey data
Last updated 2 years agofrom:dcc728e99a. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win-x86_64 | NOTE | Nov 05 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 05 2024 |
R-4.4-win-x86_64 | NOTE | Nov 05 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 05 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 05 2024 |
R-4.3-win-x86_64 | NOTE | Nov 05 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 05 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 05 2024 |
Exports:boot_hopitdisabilityWeightsgetCutPointsgetLevelshealthIndexhopithopit.controllatentIndexlrt.hopitpercentile_CIstandardiseCoefstandardizeCoef
Dependencies:base64encbitbit64bslibcachemclassclassIntclicliprcommonmarkcpp11crayonDBIdigestdplyre1071fansifastmapfontawesomeforcatsfsgenericsgluehavenhighrhmshtmltoolshttpuvjquerylibjsonliteKernSmoothlabelledlaterlatticelifecyclemagrittrMASSMatrixmemoisemimeminiUIminqamitoolsnumDerivpillarpkgconfigprettyunitsprogresspromisesproxypurrrquestionrR.cacheR.methodsS3R.ooR.utilsR6rappdirsrbibutilsRcppRcppArmadilloRcppEigenRdpackreadrrlangrprojrootrstudioapisassshinysourcetoolsstringistringrstylersurveysurvivaltibbletidyrtidyselecttzdbutf8vctrsvroomwithrxfunxtable
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Likelihood Ratio Test Tables | anova.hopit |
Bootstrapping hopit model | boot_hopit |
Calculate the threshold cut-points and individual adjusted responses using Jurges' method | getCutPoints |
Summarize the adjusted and the original self-rated response levels | getLevels |
Artificially generated health survey data | healthsurvey |
Generalized hierarchical ordered threshold models. | hopit |
Auxiliary for controlling the fitting of a 'hopit' model | hopit.control |
Calculate the latent index | healthIndex latentIndex |
Calculating the confidence intervals of the bootstrapped function using the percentile method | percentile_CI |
Standardization of the coefficients | disabilityWeights standardiseCoef standardizeCoef |
Calculation of the variance-covariance matrix for a specified survey design (experimental function) | svy.varcoef_hopit |